Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cereb Circ Cogn Behav ; 6: 100203, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38292016

RESUMEN

As the emerging treatments that target grey matter pathology in Alzheimer's Disease have limited effectiveness, there is a critical need to identify new neural targets for treatments. White matter's (WM) metabolic vulnerability makes it a promising candidate for new interventions. This study examined the age and sex differences in estimates of axonal content, as well the associations of with highly prevalent modifiable health risk factors such as metabolic syndrome and adiposity. We estimated intra-axonal volume fraction (ICVF) using the Neurite Orientation Dispersion and Density Imaging (NODDI) in a sample of 89 cognitively and neurologically healthy adults (20-79 years). We showed that ICVF correlated positively with age and estimates of myelin content. The ICVF was also lower in women than men, across all ages, which difference was accounted for by intracranial volume. Finally, we found no association of metabolic risk or adiposity scores with the current estimates of ICVF. In addition, the previously observed adiposity-myelin associations (Burzynska et al., 2023) were independent of ICVF. Although our findings confirm the vulnerability of axons to aging, they suggest that metabolic dysfunction may selectively affect myelin content, at least in cognitively and neurologically healthy adults with low metabolic risk, and when using the specific MRI techniques. Future studies need to revisit our findings using larger samples and different MRI approaches, and identify modifiable factors that accelerate axonal deterioration as well as mechanisms linking peripheral metabolism with the health of myelin.

2.
Front Neurol ; 14: 1094313, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37139071

RESUMEN

In the past 20 years, white matter (WM) microstructure has been studied predominantly using diffusion tensor imaging (DTI). Decreases in fractional anisotropy (FA) and increases in mean (MD) and radial diffusivity (RD) have been consistently reported in healthy aging and neurodegenerative diseases. To date, DTI parameters have been studied individually (e.g., only FA) and separately (i.e., without using the joint information across them). This approach gives limited insights into WM pathology, increases the number of multiple comparisons, and yields inconsistent correlations with cognition. To take full advantage of the information in a DTI dataset, we present the first application of symmetric fusion to study healthy aging WM. This data-driven approach allows simultaneous examination of age differences in all four DTI parameters. We used multiset canonical correlation analysis with joint independent component analysis (mCCA + jICA) in cognitively healthy adults (age 20-33, n = 51 and age 60-79, n = 170). Four-way mCCA + jICA yielded one high-stability modality-shared component with co-variant patterns of age differences in RD and AD in the corpus callosum, internal capsule, and prefrontal WM. The mixing coefficients (or loading parameters) showed correlations with processing speed and fluid abilities that were not detected by unimodal analyses. In sum, mCCA + jICA allows data-driven identification of cognitively relevant multimodal components within the WM. The presented method should be further extended to clinical samples and other MR techniques (e.g., myelin water imaging) to test the potential of mCCA+jICA to discriminate between different WM disease etiologies and improve the diagnostic classification of WM diseases.

3.
Artículo en Inglés | MEDLINE | ID: mdl-35329061

RESUMEN

Certain exposures related to agricultural work have been associated with neurological disorders. To date, few studies have included brain health measurements to link specific risk factors with possible neural mechanisms. Moreover, a synthesis of agricultural risk factors associated with poorer brain health outcomes is missing. In this systematic review, we identified 106 articles using keywords related to agriculture, occupational exposure, and the brain. We identified seven major risk factors: non-specific factors that are associated with agricultural work itself, toluene, pesticides, heavy metal or dust exposure, work with farm animals, and nicotine exposure from plants. Of these, pesticides are the most highly studied. The majority of qualifying studies were epidemiological studies. Nigral striatal regions were the most well studied brain area impacted. Of the three human neuroimaging studies we found, two focused on functional networks and the third focused on gray matter. We identified two major directions for future studies that will help inform preventative strategies for brain health in vulnerable agricultural workers: (1) the effects of moderators such as type of work, sex, migrant status, race, and age; and (2) more comprehensive brain imaging studies, both observational and experimental, involving several imaging techniques.


Asunto(s)
Exposición Profesional , Plaguicidas , Agricultura , Animales , Encéfalo/diagnóstico por imagen , Agricultores , Humanos , Exposición Profesional/efectos adversos , Plaguicidas/análisis , Factores de Riesgo
4.
Neuroimage ; 239: 118305, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34174392

RESUMEN

White matter deterioration is associated with cognitive impairment in healthy aging and Alzheimer's disease. It is critical to identify interventions that can slow down white matter deterioration. So far, clinical trials have failed to demonstrate the benefits of aerobic exercise on the adult white matter using diffusion Magnetic Resonance Imaging. Here, we report the effects of a 6-month aerobic walking and dance interventions (clinical trial NCT01472744) on white matter integrity in healthy older adults (n = 180, 60-79 years) measured by changes in the ratio of calibrated T1- to T2-weighted images (T1w/T2w). Specifically, the aerobic walking and social dance interventions resulted in positive changes in the T1w/T2w signal in late-myelinating regions, as compared to widespread decreases in the T1w/T2w signal in the active control. Notably, in the aerobic walking group, positive change in the T1w/T2w signal correlated with improved episodic memory performance. Lastly, intervention-induced increases in cardiorespiratory fitness did not correlate with change in the T1w/T2w signal. Together, our findings suggest that white matter regions that are vulnerable to aging retain some degree of plasticity that can be induced by aerobic exercise training. In addition, we provided evidence that the T1w/T2w signal may be a useful and broadly accessible measure for studying short-term within-person plasticity and deterioration in the adult human white matter.


Asunto(s)
Capacidad Cardiovascular/fisiología , Corteza Cerebral/fisiología , Baile/fisiología , Ejercicio Físico/fisiología , Envejecimiento Saludable , Imagen por Resonancia Magnética/métodos , Plasticidad Neuronal/fisiología , Caminata/fisiología , Sustancia Blanca/fisiología , Acelerometría , Anciano , Anisotropía , Corteza Cerebral/diagnóstico por imagen , Cognición/fisiología , Función Ejecutiva/fisiología , Prueba de Esfuerzo , Femenino , Humanos , Masculino , Memoria Episódica , Pruebas de Estado Mental y Demencia , Persona de Mediana Edad , Percepción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...